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TECHNICAL MEMORANDUM

A NONCONTACTING SCANNING PHOTOELECTRON EMISSION
TECHNIQUE FOR BONDING SURFACE
CLEANLINESS INSPECTION

INTRODUCTION

The performance of many critical components for the Space Shuttle and other
flight hardware depends on the quality of bonding achieved during fabrication of the
component. An example of a major Shuttle element where quality bonding is crucial
to performance, reliability, and safety is the Solid Rocket Motor (SRM). Inadequate
bonding of the rubber insulation to the case could result in exposure of the D6AC
steel case to the hot gas from the burning propellant and result in burn-thru which
could be disastrous. Also, low strength bonds between the various nozzle parts
could significantly affect SRM flight success.

Because of the high reliance placed on bonded parts and the wide variability
in strength that is often observed, a comprehensive program was initiated by the
Materials and Processes Laboratory of the Marshall Space Flight Center (MSFC) to
investigate ways of improving bonding process control during the manufacture of
critical SRM hardware in order to improve overall bond quality and reduce within-part
and part-to-part variability in bonding strength. The process control parameters
that affect bonding integrity include adhesive variability, storage, mixing, pot life,
contamination of the bonding surface, surface preparation, adhesive application, and
curing. Thus, all of these were included in the program. In addition, since bonding
process control must be an inherent part of the overall manufacturing process, it has
to be specific with respect to the sensitivity of the adhesives, bonding surfaces, and
subsequent bonds to the environments (moisture, thermal, contamination) encountered
during the manufacturing flow. For this reason, the program was implemented as a
joint endeavor between MSFC and the Wasatch Division of Morton Thiokol, manufac-
turer of the SRM.

Of all of the above parameters that affect bonding, contamination is probably
the most insidious and least understood. The presence of thin molecular films on
bonding surfaces can drastically affect the strength of some bonding systems. These
films can result from inadequate or incomplete cleaning, oxide growth during the time
between cleaning (e.g., grit blasting) and bonding, or from failure to properly pro-
tect cleaned surfaces from oils, greases, fingerprints, release agents, or deposition
of airborne molecular species generated by adjacent manufacturing or processing
operations. These films may or may not be uniformly deposited on a large area
bonding surface which can lead to variation in bond quality across that surface.

The thickness and chemistry of the film, its interaction with adhesive, and the
adherends, and the subsequent response to the curing process can all affect the
degree and level of bonding achieved. Often these contaminants are invisible, making
detection and quantitative measurement difficult and expensive. Thus, in order to
eliminate or minimize contamination as a threat to bond integrity, strict contamination
control of bonding surfaces is required. To assure the proper degree of control,
required cleanliness levels must first be determined. Second, a methodology must be
established for the uniform cleaning of the surfaces to the established levels and
maintaining them at these levels from the completion of cleaning to.the initiation of
bonding. Third, prebonding inspection of the surfaces is required to verify that



they have been properly controlled. This bonding process contamination control
scenario is illustrated by means of the contamination control triangle shown in
Figure 1.

Previously, the rigorous application of this approach to contamination control of
bonding surfaces was severely restricted due to the lack of a fast, cost effective
method for quantitatively measuring contaminant levels on hardware bonding surfaces
after cleaning and prior to bonding to verify compliance with established cleanliness
requirements. Since such a method was needed for the SRM bonding improvement
program, a development effort was initiated by MSFC which resulted in the technique
described in this paper.

o Establish

CLEANLINESS REQUIREMENTS

Figure 1. Contamination control triangle.

TECHNIQUE DESCRIPTION

The prototype system that was developed for scanning SRM case segments to
detect and quantify residual containant levels is shown schematically in Figure 2.
The system (acronym ConScan for contamination scanning) consists of a commercially
available photoelectron emission [or alternately, optically stimulated electron emission
(OSEE)] sensor, whose description and theory of operation will be given later; a servo
controlled sensor position controller for maintaining the proper sensor to scanned
surface distance; encoders for providing sensor position coordinates (height, angle)
relative to the case; a revolution counter; a computer data acquisition, analysis,
display and storage system; and software specifically developed for this application.
For scanning of cylindrical articles such as the SRM case, the article is placed on a
turntable and the position controller, with sensor(s) mounted, is installed on a
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translation stage such as a robot arm which moves the sensor vertically as the article
to be inspected is rotated by the turntable. The article can be eccentric, since the
position controller continuously senses by means of a proximity detector the distance
between the contamination sensor and the surface being scanned and maintains, through
a servo loop, the required spacing. The setup for the scanning of the SRM case is
shown schematically in Figure 3. In this application, the sensor/position controller
[Fig. 3(a)] is mounted on a hydraulically controlled cage that can be moved vertically
as the case is rotated.

Two scanning modes can be accommodated, barber pole or manual indexing. In
the barber pole mode, the sensor is moved vertically at a constant rate during part
rotation, thereby providing a spiral inspection. Spiral spacing can be controlled
from zero to the percentage overlap desired by adjusting the rate of vertical transla-
tion relative to the rotational speed. The second mode of operation, manual indexing,
is useful for rescanning of previously scanned areas. For instance, if a complete
scan is made using the barber pole mode and a contaminated area is detected, the
vertical and angular coordinates of that area can be obtained from the data display
and the sensor can be translated to that vertical position and the part rotated to the
required angular position. In this manner, the contaminated area can easily be
located for cleaning. After cleaning, just the area cleaned can be reinspected by
indexing at desired increments through the area to verify that the area had been
cleaned to the required level.

As the part is scanned, the sensor output is continuously input to the data
system where it is correlated with the sensor height and the angular position of the
part, thereby providing a readout of the sensor as a function of position relative to
the part. Using previously developed calibration data relating sensor output to con-
taminant level, the sensor readings can be translated into contaminant levels. Accept/
reject values based on contamination versus bond strength tests can be displayed on
the color monitor by assigning colors to the ranges of sensor output corresponding to
these values. Thus, as the part is scanned, the reject areas will be displayed in the
specified color in real time on the monitor. The ConScan software developed for
analyzing and displaying these data is user friendly in that a question/answer format
is employed which simplifies selection of scan mode, scan parameters, accept/reject
levels, etc. Once a scan is completed, the operator can at once determine whether
the part is acceptable or whether further cleaning is required. If cleaning is
required and the part is rescanned, the original data are retained in the computer
memory and an update is generated for the area rescanned. Thus, archival records
are obtained to document the inspection. If a hard copy of the scan data is needed
for review, one can be made with the color printer [Fig. 3(b)]. A plotter is used
to. graph the actual sensor output for verification of proper functional operation. The
successful application of the above system depends on (1) a knowledge of the funda-
mental performance capabilities and limitations of the photoelectron emission contamina-
tion sensor, (2) calibration of the sensor output as a function of contaminant level on
the specific surface to be inspected, and (3) the effect of contaminant level on bond
quality. These factors along with relative illustrative data are discussed in the
following sections.

SENSOR CHARACTERIZATION

The contamination sensor used is commercially available from Photo Acoustic
Technology, Inc. (PAT), Newbury Park, California, which advertises it as a surface
quality monitor. Since it is a patented device (T. Smith, Inventor), and there is no
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other licensee, it is the only instrument of its kind on the market. This type of
sensor was selected based on the results of previous development work [1,2] spon-
sored by NASA and other investigations [3,4,5] which showed that the photoelectron
emission technique, the principle of operation for the PAT sensor, has the capability
of providing quantitative thin layer contamination data for various types of contami-
nants and surfaces, e.g., silicone on aluminum, oxides on metals, and oil on silicon
wafers. Of course, as for any analytical tool, it has certain operational sensitivities
and limitations which must be understood for proper utilization of its inherent cap-
abilities for both laboratory and production applications and environments.

Theory of Operation

It is well known that when metals or certain other surfaces are illuminated with
ultraviolet (UV) light with the proper wavelength (energy) electrons are emitted from
the surface.. The process by which UV photons interact with the surface to produce
electrons is known as photoelectron emission (PEE) or optically stimulated electron
emission (OSEE). Smith [4] showed that the emitted and subsequently scattered
electrons can be collected across an air gap by a biased collector and measured as a
current [4]. If the intensity and energy of the UV light and the surface-to-collector
distance are held relatively constant, changes in the measured photocurrent (which is

on the order of 10 10 to 10 12 A) can provide information about the surface, e.g.,
electronic structure, composition, and chemistry. Any contaminant on the surface,
depending on its own photoemission characteristics, can either enhance or attenuate
the inherent emission from the clean surface. In simple electronic terms, the clean
surface is a current generator, and a non-photoemitting contaminant acts as a
resistance because the current is attenuated by interactions between the electrons and
the contaminant. The thicker the contaminant, the higher the resistance and con-
sequently the greater the decrease in the measured current.

Figure 4 (a through d) depicts schematically the photoemission process and the
effect of various thicknesses of contaminant (t) on the photocurrent (I). If the
contaminant is photoemitting, e.g., Conoco HD-2 grease, then the contaminant can
act as a resistance and an electron generator. Whether the collected current is
attenuated or enhanced will be controlled by the contaminant film thickness and the
relative emission characteristics of the contaminant with respect to the substrate sur-
face. If the thickness is great enough to totally absorb the UV so that no UV
photons reach the substrate, then the measured current is due only to those electrons
emanating from the photoemitting contaminant. If some UV photons reach the sub-
strate, and the film thickness is such that the resulting substrate electrons are not
totally absorbed, then the measured current (I) will be the sum of the current from
the substrate (IS) and that due to the contaminant (Ic). The case of a photoemitting

contaminant is illustrated in Figure 4(e).

The PAT photoelectron emission sensor (Fig. 5) consists of a detector head that
contains a UV source (Hg-Xe lamp), a collector electrode with biasing circuitry, and
amplification electronics mounted in a small housing which is connected to a controller
~ (Fig. 6). The controller provides the power for the lamp and the electronics for
processing and displaying the signal from the detector. The signal flow block diagram
is shown in Figure 7. Since the currents measured by the instrument are very low
' (picoamperes), a significant amount of specialized circuitry is involved in keeping the
signal level above the noise and in providing stable measurements. The sensor is
connected to the controller by means of a shielded coaxial cable which is available in
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lengths up to 100 ft. A sample ground cable connection is provided which must be
connected to the part/material being inspected. This is in turn connected to an
earth ground. Sample-to-ground resistance should be less than 10 ohms. In theory,
the operation of the sensor is straightforward. It is calibrated by measuring the
photocurrent from a clean surface and then from identical surfaces with controlled
amounts of a contaminant to obtain a correlation between the sensor output (digital
display or analog signal) and the contaminant level. By making measurements in the
same way on another surface of unknown cleanliness and invoking these data, the
residual contaminant level can be determined for that surface. In actual application
of the sensor for making quantitative, repeatable measurements, there are several
complicating factors which can affect the measurement, the most significant of which
are discussed in the following sections.

Effect of Sensor to Surface Spacing

_ The sensor output is dependent on the spacing between the sensor and the
surface being measured. This sensitivity is basically due to three factors. First, as
the sensor moves further away from the surface, the UV intensity on the surface
decreases and fewer photoelectrons are produced since the magnitude of the photo-
current is directly proportional to the number of UV photons impinging on the surface
per unit of time.  Second, with increasing distance the photoelectrons have to travel
further, resulting in electron loss due to an increasing number of collisions with the
ambient gas molecules. Third, the electric field strength that is developed by the
bias voltage between the collector (anode) and the surface (cathode) is dependent

on the distance between the two (E = V/D). Thus, as the distance increases the
collection efficiency decreases due to the decrease in the field driving the electrons
toward the collector. The integrated effect of these three factors on the output from
a PAT Model OPX100 Sensor measuring a vapor deposited chrome surface is shown in
Figure 8. As shown in the figure, the sensitivity starts dropping significantly at a .
distance (gap) of approximately 0.275 in. Thus, if the sensor is used in a noncon-
tact scanning mode, the maximum spacing should be specified at no more than 0.25 in.
so that a margin in position control is available for maintaining high sensitivity.

Surface Variation Considerations

Materials used in engineering applications rarely, if ever, have perfectly smooth
and homogeneous surfaces. In fact, considerable effort is made to provide specific
finishes for particular applications. Also, alloys are generally used instead of pure
metals to obtain improved properties. To complicate things further, the alloys are
subjected to different heat treatments to enhance particular characteristics. These
processes can lead to different sensor responses.

Table 1 shows the results of OSEE sensor measurements made on a GAR S22
microfinish comparator. The results are interesting. For example, the response from
a 500 microinch (pin.) milled finish was 20 percent lower than from a 63 pin. milled
finish but a 125 nin. profiled finish has the same response as the 63 milled finish.
Not only is the average surface roughness a factor but also the mechanical process by
which it is attained. In general, however, as the roughness increases using the same
process, the response decreases, probably due to the increased scatter of the UV
light and the larger emission angles for the electrons which reduces collection
efficiency.

13
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TABLE 1. EFFECT OF SURFACE FINISH ON OSEE SENSOR RESPONSE

Surface Roughness Height (p-in)

8
16
32

63
125
250

63
125
250

*Measured on a GAR S22 Microfinish Comparator

Ground with Periphery of Wheel
Ground with Periphery of Wheel

Ground with Periphery of Wheel

Lapped
Lapped
Lapped

Milled
Milled
Milled

Profiled
Profiled

Profiled

Relative Sensor Output*

658
700
688

870
835
750

800
824
640

863
799
520



Oxide formation on alloys is usually not uniform over the surface which causes
a variation in sensor output. Generally, oxides are not photoemitting at the maximum
UV energy of 6.7 electron volts (eV) available from the sensor UV source (nickel
oxide is an exception). Thus, freshly grit-blasted aluminum will give a very high
response whereas aluminum with a thick oxide layer will give a very low response
since the oxide attenuates the photocurrent. It is therefore important to calibrate
the sensor response for each specific surface (material, finish, heat treatment, pro-
cessing) to be measured. Also, it should be expected that a variation in sensor
- response will be observed when aluminum or other oxide forming materials are abraded
since the oxides are difficult to totally remove. '

" Response to Various Materials

The sensor response to various materials generally depends on the magnitude
of the photoelectron work furction of the material relative to the maximum usable UV
energy reaching the surface from the sensor lamp. The principal high energy peaks
from the lamp are at 1849 & (v6.7 eV) and 2535 & (~5 eV). For relatively large
gaps, the 1849 R line will be severely attenuated due to interaction with ambient
oxygen molecules. Hence, it should be assumed that ~5 eV is the maximum energy
available for measurements. Thus, if a material has a work function less than 5 eV,
it should produce a measurable photocurrent. Table 2 lists published photoelectron
work functions for several materials. Note that all of these are less than 5 eV except
for aluminum oxide.  Both conducting and nonconducting materials can be photo-
emitting, examples of which are the materials in Table 2. Other examples include the
epoxy primer (EA 9228), carbon phenolic, and glass phenolic materials used in the
fabrication of the SRM nozzle.” In addition to these, successful measurements have
been made on graphite/epoxy and fiberglass/epoxy. Some materials which do not
exhibit a measurable response include Teflon, glass, and magnesium fluoride. The
fact that Teflon is not photoemitting is fortunate in that it can be a detrimental
surface contaminent for bonding and is therefore detectable with the OSEE sensor
since it will attenuate the photocurrent from the bonding surface.

In general, it appears that measurements can be made on most of the materials
of engineering importance, which means that the OSEE measurement technique has
great utility.

Scan Rate

The sensor response time is dependent on the gain setting used, which is
adjustable . from 1 to 10.. Very good response time is achieved for gain settings of 6
or less. As the gain is increased beyond 6, a notable drop in response time occurs.
With the proper gain setting, high scan rates are possible. For example, at a gain
setting of 5 on a PAT OPX200 (6 in. x 0.25 in. inspection area), highly repeatable
measurements were made at scan rates of 1 in./sec to 7.5 in./sec on a large test
article composed of several surfaces with highly different photoemission characteristics
(Fig. 9).

Low scan rates usually are not desirable for some surfaces such as epoxy
primers and paint since the sensor output will decay with time of exposure. This
effect is discussed in some detail in references 1 and 2. It is recommended that sur-
faces exhibiting this decay be scanned at a minimum rate of 1 in./sec unless only
the peak reading is being recorded.
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TABLE 2.

Material
Zn
Mg
Fe
Be
Ti
Pb
Ta
cd
Al
Pt
Mo
L
Si
Cr
Ag
C
Au
Ni
Al.0

NiO

ELECTRON WORK FUNCTIONS (EV)
OF VARIOUS MATERIALS

Photoelectric work Function (EV)*

3.08
3.68
3.91
3.92
3.95
3.97
4.05
4.07
4.08

Ref. ¢4

*Ref. Handbook of Material Science, Volume 1, 1974,

CRC Press.
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Repeatability and Stability

During the MSFC investigations reported in this paper, excellent repeatability
and stability generally was demonstrated by the OSEE sensor. However, some prob-
lems were encountered that require discussion. It was noted that the sensor would
be highly stable for days or even weeks and then a shift in output magnitude would
occur. The instrument was being used in a laboratory whose power was relatively
stable but fluctuations were known to occur when large welding machines were used
in another part of the building in which the laboratory was located. Based on this
observation, it was decided to power the instrument through a line regulator. This
essentially eliminated the problem. However, when the line voltage dropped below the
line regulator limits, the problem repeated itself. A line monitor was used to record
out-of-limit changes in voltage and frequency. So long as the voltage and frequency
are within limits, no problem is encountered with the instrument. In a production
environment, major power fluctuations are frequent, therefore for this application an
uninterruptible power source (UPS) is highly recommended. Even this may not be
adequate, if the voltage drops below 80 V which is the control limit for most UPS
units. Experiments were made in which the line voltage was decreased in 10 V
intervals from 110 V to 10 V and then suddenly increased to 110 V. The output
decreased rapidly as the voltage decreased. After the level was quickly raised from
10 to 110 V the sensor no longer functioned properly. Thus, for stable, repeatable
operation the instrument power should not be allowed to vary more than *2 percent.
To verify that no changes in sensitivity have occurred, a reference surface should
be measured periodically. The reference used by MSFC is vapor deposited chrome
with a thickness of 2000 to 3000 A. If properly prepared, a smooth homogeneous
surface is obtained. The reference is kept covered and handled only at the edges
with gloves. '

CALIBRATION METHOD AND RESULTS FOR SRM CASE INSPECTION

The proper calibration of the sensor for each specific measurement application
is necessary if quantitative contamination measurements are to be made. The pro-
cedure used and the result obtained for the inspection of the SRM D6AC steel case
are presented below.

The SRM case is made of D6AC steel which is subject to corrosion. A corrosion
inhibiting grease, Conoco HD-2, is applied to protect the surface during shipment and
storage. Prior to the processing of the case segments for the bonding of the rubber
insulation to the steel, the case cylinders (12-ft diameter by 13.5-ft long) are
degreased using a methyl chloroform vapor degreaser. The cylinders are then
inspected using a "black light" to verify that the grease has been removed by the
degreasing process. Following the "black light" inspection, the O-ring grooves are
carefully greased and two case cylinders are mated to form a casting segment that is
_ approximately 12 ft in diameter and 27 ft long. The segment is then moved to a pit
where the exterior is painted and the Chemlock adhesive system is applied on the
interior. Green rubber is then laid on the adhesive and the segment is placed in an
autoclave for vulcanization at 100 psi and 300°F for 3 hours. The requirement for
the strength of the rubber-to-case bond is 150 1b/in. (PLI) in 180-deg peel. Because
of the desire to enhance the strength and reliability of this critical bond, an inves-
tigation was initiated to determine the case cleanliness level necessary to repeatedly
achieve the 150 PLI requirement. In addition, the effectiveness of the "black light"
inspection in detecting case contamination was to be established.
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To establish the required cleanliness level, peel strength versus contaminant
level tests were made. One-foot by one-foot steel plates were cut from a scrap case
cylinder so that surfaces identical to the case were used for the tests. The surface
roughness as measured was 100 pin. The plates were grit blasted and then
remeasured to verify that the grit blasting had not changed the finish. After grit
blasting, they were methyl chloroform vapor degreased and then ultrasonically cleaned
in a methyl chloroform bath. The cleanliness level of each plate was then determined

by NVR analysis to be less than 0.25 mg'/ftz. The plates were contaminated by spray
application of Conoco HD-2/methyl chloroform solutions to provide nominal grease

levels of 1, 5, 10, 50, 100, 200, 500, and 1000 mg/ft .. The levels were checked by
spraying 1-ft by 1-ft aluminum foﬂ and weighing to verify the quantity of HD-2
applied to the plates. OSEE measurements were made on clean plates and those that
had been contaminated. The excellent correlation estabhshed between the OSEE sensor

response and the nominal contaminant level up to 50 mg/ft is shown in Figure 10.
A gain change from 5 to 6 increased the response but did not change the slope.

. OSEE data for 100 mg/ft2 and higher levels are not shown since the HD-2 grease is

photoemitting. Beyond 50 mg‘/f’c2 the OSEE response dropped significantly and then
increased. This was first due to the complete absorption of the photoelectrons from
the steel, then the total absorption of the UV in the grease, and finally the subse-
quent increased photocurrent from the grease.

Upon completing the OSEE measurements, the Chemlock primer and adhesive and
the NBR rubber were applied exactly according to the SRM process. The plates were
vacuum bagged and autoclaved. Upon completion of processing, eight 1-in. wide
strips were cut in the rubber on each plate and 180-deg peel tests were made. The
test results are graphically depicted in Figure 11. No bonding was achieved for HD-2

contaminant levels of 1000 and 500 mg/f-tz.(Fig. 12). Only 5 PLI average strength
was’ obtained' at 200 mg;/ft2 and failure was 100 percent adhesive (Fig. 13). At 100
mg/ft a peel strength of 59 PLI was attained and the fallure was 60 to 80 percent

adhes1ve (F1g 14). For contaminant levels of 50 mg/ft or less, the failure was
cohesive in the rubber (Figs. 15, 16, and 17). However, the peal strength continued
to increase significantly as the contaminant level decreased. Based on this observa-
tion, it was postulated that the HD-2, which has a high vapor pressure, was diffusing
through the Chemlock during the vulcanization process (autoclaving at 100 psi, 300°F,
3 hr) and degrading the rubber. Subsequent tests showed that the grease experienced
an 80 percent weight loss under these conditions and residual gas analyzer tests
verified that HD-2 would diffuse through Chemlock at 300°F. Additional tests deter-
mined the effect on NBR rubber properties due to HD-2 diffusion into the rubber.
The test specimens and data are shown in Figure 18. As can be seen, the diffused
grease plasticized the rubber resulting in a decrease in tensile strength from 1234 psi
to 935 psi and an increase in elongation from 87 to 522 percent. These data sub-
stantiated the hypothesis that small quantities of diffused HD-2 could significantly
affect the post-vulcanization mechanical properties of the NBR rubber. It was con-
cluded from these tests that the HD-2 contaminant level must be controlied to a level

of 5 mg/ft2 or less if a composite bond line peel strength of 150 PLI was to be

achieved repeatedly and that a level of 50 mg/ft2 or less was necessary to assure no
failure in the adhesive. It was also demonstrated that the OSEE technique could be

used to measure HD-2 levels on D6AC steel over the range of 0.25 to 50 mg/ftz.
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Figure 12. 500 mg/ft2 peel strength specimen.
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Figure 13. 200 mg‘/f‘t2 peél strength specimen.
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Figure 15. 10 mg;/ft2 peel strength specimen.
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Figure 16. 5 mg/f‘c2 peel strength specimen.
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Figure 17. <0.25 mg/ftz peel strength specimen.
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As stated previously, "black light" inspection sensitivity was to be determined
during these tests. Under optimum observing conditions, a uniform contaminant level

of 100 mg'/ft2 or greater could be detected. Thus, the black light and the OSEE
technique complement each other. The "black light" is useful for detecting gross
contaminent levels but cannot detect the levels necessary to achieve quality bonding.
The OSEE technique can detect these low levels but cannot be used for the high
levels. Thus, the case should first pass a "black light" inspection and then be
inspected with the OSEE technique for verification of cleanliness requirements prior
to bonding.

Figure 19 graphically illustrates how the combination of surface finish and con-
taminant level influenced the peel strength results discussed above. In the figure,
the contaminant level is overlaid to scale on a surface profile of the D6AC steel plate.
The measured surface finish is 100 pin. or 25400 &. Since the density of HD-2

3

grease is very near 1 gm/cm®, a contaminant level of 1 mg/ft2 is equivalent to a

uniform areal thickness of ~108 &, Thus, a level of 250 mg‘/ft2 correlates to a
thickness of 27000 A or roughly 106. yin. This quantity of grease then would be
sufficiently thick to completely cover the surface thereby preventing any adhesion
between the Chemlock and the steel. Thus, it is not surprising that there was zero

peel strength at levels greater than 250 mg/ftz. As the contaminant thickness
decreases, the peel strength increases as more steel bonding surface is exposed.

Sufficient asperity area is available for good ahesion at the 50 mg‘/ft2 since this is
where the failure mode transitions from adhesive to cohesive (failure in the rubber).
The grease trapped in the valleys then becomes important because the autoclaving
temperature and time conditions cause it to diffuse through the Chemlock into the
rubber resulting in a degradation of the rubber near the Chemlock-rubber interface.
As the quantity of available grease decreases, the degree of degradation is less and
the strength is greater. If the surface were smoother, less grease would be trapped
and cleaning would be easier. Conversely, the effective area for adhesive bonding
would be decreased since the projected area of the rough surface is greater than that
of a smoother surface.

SRM CASE INSPECTION DEMONSTRATION

With the establishment of the SRM case cleanliness requirements for HD-2 grease
(the principal case contaminant) and the calibration of the OSEE technique for verify-
ing the requirements, a full scale demonstration of the prototype ConScan system
described earlier was performed at the MTI SRM manufacturing facility in Utah.
Figure 20 shows the installation of the sensor and associated position controller on
the hydraulically operated cage and the location of the sensor relative to the casting
segment which was mounted on a turntable. The data system is shown in Figure 21.

Scans were made at a rate of 30 ft/min of a nonflight casting segment after it
had been vapor degreased and stored uncovered in the manufacturing area for several
days to simulate the flow of a flight segment. A scan of a portion of the as-received
segment is shown in Figure 22. The dark areas are where the contaminant level was

greater than 5 mg/ftz. After this inspection was made, several areas scanned pre-
viously were cleaned using two different methods. One method involved hand cleaning
with a wipe saturated with methyl chloroform followed by a dry wipe. The other
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ConSc¢an data system.

Figure 21.
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Figure 22. Scan of as-received segment using ConScan.



method utilized a pressurized container with a fan-shaped nozzle filled with methyl
chloroform for flushing the surface. The result of these cleaning operations is
presented in Figure 23. The lightest (cleanest) areas were where the flushing
method was used. Hand cleaning was not as effective due to the roughness of the
surface.

SR Case Contanination Evaluation
ID: DEMO 3 AFTER CLEANING JULY BTH 1987

8.8 = Degrees 118.8 = Height in Inches 1 = Sensor Size
N-06.06 :3.25 W=3.25:342 HK-342:3.78 MW=3.78:4.33
=433 :4.64 M=4.64 :4778 i-4.78:542 ®-542:@741
Feet - s SSS— .
8-+8 188 368
2._

'’ ’ T C © 368
End of Task for file S7688173.DAT. |

Figure 23. Scan of segment after cleaning.

_ Sufficient scans were made to demonstrate the feasibility of the technique for
the inspection of SRM flight segments. The design of an on-line system for routine
SRM inspection has been initiated based on the prototype used for the demonstration.

OTHER OSEE APPLICATIONS BEING INVESTIGATED

Because of the successful results achieved for the SRM Case bond enhancement
effort, other applications for the OSEE technique currently are being investigated.
These include Space Shuttle SRM Nozzle, SRB Booster Separation Motor, and External
Tank bonding surface inspection. A brief description of the status of each is given
in the following.

SRM Nozzle

The nozzle is comprised of many large bonded parts. Both metal-composite and
composite-composite bondlines are utilized. Also, there is a wide range of potential
contaminants including fingerprints, oils, greases, release agents, and silicones
which could degrade bond quality. Laboratory testing is in progress to characterize
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the effects of these contaminants on bond strength and to develop OSEE response
and calibration data for the various surfaces and contaminants.

The MSFC OSEE laboratory system used to obtain these data is shown in Figure
24. An OSEE sensor is used to scan test specimens mounted on a computer-controlled
X-Y table. The desired sensor-to-specimen spacing is established using a Z-axis
translation controller. The area to be scanned and the number and spacing of the
measurement points are software selectable. At the completion of a scan, the data
are displayed in a 3-D format. The total system, including the computer, I/O boards,
and special software, is commercially available from PAT. Figure 25 is a scan made
of a 7075-T73 aluminum specimen that had been dry sanded with 230 grit abrasive,
wiped with methyl chloroform, and then contaminated with a fingerprint. By sub-
tracting the original non-fingerprinted scan from that shown in Figure 25, the con-
tamination from the fingerprint is clearly shown (Fig. 26). The surface was sequen-
tially wiped with methyl chloroform, toluene, and then methyl ethyl ketone (MEK).
The results are shown in Figures 27, 28, and 29. Wiping did not appear to be an
effective means of removing a fingerprint, particularly with methyl chloroform since
all it did was smear the contaminant over a larger area.

Since contaminants from sources other than fingerprints are of concern, pre-
liminary tests were made to determine the capability of the OSEE sensor to detect
these on one of the nozzle bonding surfaces. Since EA 9228 epoxy primer is being
investigated for improving the bonding between 7075-T173 and its mating surface
(glass phenolic), several different contaminants at low levels (on the order of 2 to

) mg/ftz) were applied on the material surface. Figure 30 is a scan of the original
surface containing an area near the edge with an unknown contaminant. Figure 31
shows the effect of various contaminants and Figure 32 illustrates the result of wiping
with methyl chloroform. The effectiveness of flushing the surface is dramatically
demonstrated by the scan shown in Figure 33.

Since the OSEE technique has the capability, as shown by these tests, to detect
the contaminants of interest, efforts are now underway to develop specific calibration
data for these contaminants on the various nozzle bonding surfaces.

Some measurements on full-scale SRM nozzle parts have been made. However,
due to the present lack of an automated scanning capability, only spot inspections
were made. The use of the OSEE sensor on an SRM nose inlet housing is shown in
Figure 34. In this application, a clean standoff with a non-photoemitting coating is
used to maintain the sensor-to-surface spacing. Since spot inspections by hand are
time consuming and the probability of missing a contaminated area is high, automated
scanning of the total bonding surface is highly desirable. Figures 35 and 36 show
a gantry robot and the robot arm with an OSEE sensor being used to scan a 10-ft
diameter test article mounted on a turntable. This system is under development for
the automated scanning of the large SRM nozzle parts.

BSM Investigations

Figure 37 shows the development setup for scanning of the BSM Case which is
7075-T73 aluminum. The ConScan system described earlier is being used for this
application. Representative scans of the BSM Case are shown in Figures 38 and 39.
The first scan shows the case prior to cleaning. The second scan shows the effect
of sanding throughly. The dark spots are very thin layer contaminants (release
agent, top and hydraulic oil, bottom) that were applied on the otherwise clean area.
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Figure 24.

MSFC Laboratory OSEE PatScan system.
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FEPT ON 230 GRITRD SURFACE/AL7075-T73

SCAN FILE: A:FGPTRI.DAT
TEST DATE: 10-01-1987
1EST TINE: 00:42:27
ELEVATE = 65.0 deg

X SIZE = 9.0000 cw

Y SIZE = 9.0000 cx

XY STEP = 0.1500 ca
MAXIMUM =X-1556
NINIMM =X-2368

2

o Original surface variation

subtracted to show contamination

produced by finger (thumb)
touching surface

6€

Figure 26.

Contamination from fingerprint.
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FGPT AFTER 1 1 1 WIPE

SCAN FILE: A:FEPT03.DAT
TEST DATE: 10-01-1987
TEST VIME: 02:00:17
ELEVATE = 85.0 deg

X SIZE = 9.0000 cm

Y SIZE = 9.0000 c»

XY STEP = 0.1500 c=»
NAXIMUM =1102

MINIMM = 438

3

o Fingerprint wiped with 1,1,1

o Wipe smeared fingerprint contaminant

but did not remove it.
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Figure 27.

Fingerprint after methyl chloroform wipe.
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but did not totally remove contaminant
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Figure 28. Fingerprint after wiping with methyl chloroform and toluene.
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further but still did not totally
remove contaminant.
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Figure 29. Fingerprint after wiping with methyl chloroform, toluene, and MEK.
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 FLUSH 30 MIN

SCAN FILE: A:NIH79N,DAT
TEST DATE: 09-02-1987
TEST TINE: 22:12:44
ELEVATE = 5.0 deg

X SIZE = %24.0000 ca

Y SIZE = X24.0000 cn
XY STEP = 1,0000 cx
MAXIMUM = 935

MINIMUM = 343

Figure 33.
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OSEE spot inspection of SRM nose inlet housing .

Figure 34.
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OSEE scanning of BSM.

Figure 37.
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Figure 38. Scan of BSM Case before cleaning.
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o1



The dark line at the bottom is due to the low signal obtained as the sensor moved
away from the case before the scan was completed.

External Tank Studies .

A task to establish quantitative OSEE data for External Tank bonding surfaces
has been initiated. Currently the method for verifying cleanliness of these surfaces
is the water break free test. Correlative data for OSEE versus the water break
method will be obtained for various contaminant levels to establish relative sensitivi-
ties. In addition, the technique will be investigated as a tool for monitoring aging
of surfaces prior to bonding. '

CONCLUSIONS

It 'is believed, based on the work described above, that the photoelectron
emission technique, properly applied, has the sensitivity and operational simplicity
required to providée fast and cost effective surface contamination evaluations. Its
application to bonding surface inspection for verifying established cleanliness require-
ments should result in the significant improvement of overall bond quality for a
variety of bonding surfaces. NASA/MSFC plans to continue the development of this
technique for a wide range of uses, including not only SRM, BSM, and ET hardware
bonding surface inspection, but also for cure monitoring, location of impact damaged
areas in composites, and other applications where knowledge of changes in surface
characteristics can provide important insight as to the integrity of the material for
its intended application. :
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